histogram.h file
Histograms and related functionality. See Histograms.
Classes
-
class dip::
Histogram - Computes and holds histograms.
Functions
-
auto dip::
CumulativeHistogram(dip::Histogram const& in) -> dip::Histogram - Computes a cumulative histogram from
in
. Seedip::Histogram::Cumulative
. -
auto dip::
Smooth(dip::Histogram const& in, dip::FloatArray const& sigma) -> dip::Histogram - Returns a smoothed version of the histogram
in
. Seedip::Histogram::Smooth
. -
auto dip::
Smooth(dip::Histogram const& in, dip::dfloat sigma = 1) -> dip::Histogram - Returns a smoothed version of the histogram
in
. Seedip::Histogram::Smooth
. -
auto dip::
Mean(dip::Histogram const& in) -> dip::FloatArray - Computes the mean value of the data represented by the histogram.
-
auto dip::
Covariance(dip::Histogram const& in) -> dip::FloatArray - Computes the covariance matrix of the data represented by the histogram.
-
auto dip::
MarginalPercentile(dip::Histogram const& in, dip::dfloat percentile = 50) -> dip::FloatArray - Computes the marginal percentile value of the data represented by the histogram. The marginal percentile is a percentile computed independently on each dimension, and thus is not one of the input values.
-
auto dip::
MarginalMedian(dip::Histogram const& in) -> dip::FloatArray - Computes the marginal median value of the data represented by the histogram. The median is the 50th
percentile, see
dip::MarginalPercentile
for details. -
auto dip::
Mode(dip::Histogram const& in) -> dip::FloatArray - Returns the mode, the bin with the largest count.
-
auto dip::
PearsonCorrelation(dip::Histogram const& in) -> dip::dfloat - Computes the Pearson correlation coefficient between two images from their joint histogram
in
. -
auto dip::
Regression(dip::Histogram const& in) -> dip::RegressionParameters - Fits a line through the histogram. Returns the slope and intercept of the regression line.
-
auto dip::
MutualInformation(dip::Histogram const& in) -> dip::dfloat - Calculates the mutual information, in bits, between two images from their joint histogram
in
. -
auto dip::
Entropy(dip::Histogram const& in) -> dip::dfloat - Calculates the entropy, in bits, of an image from its histogram
in
. -
auto dip::
GaussianMixtureModel(dip::Histogram const& in, dip::uint numberOfGaussians, dip::uint maxIter = 20) -> std::vector<GaussianParameters> - Determines the parameters for a Gaussian Mixture Model fitted to the histogram
in
. -
auto dip::
IsodataThreshold(dip::Histogram const& in, dip::uint nThresholds = 1) -> dip::FloatArray - Determines a set of
nThresholds
thresholds using the Isodata algorithm (k-means clustering), and the image’s histogramin
. -
auto dip::
OtsuThreshold(dip::Histogram const& in) -> dip::dfloat - Determines a threshold using the maximal inter-class variance method by Otsu, and the image’s histogram
in
. -
auto dip::
MinimumErrorThreshold(dip::Histogram const& in) -> dip::dfloat - Determines a threshold using the minimal error method method, and the image’s histogram
in
. -
auto dip::
GaussianMixtureModelThreshold(dip::Histogram const& in, dip::uint nThresholds = 1) -> dip::FloatArray - Determines a set of
nThresholds
thresholds by modeling the histogram with a Gaussian Mixture Model, and choosing the optimal Bayes thresholds. -
auto dip::
TriangleThreshold(dip::Histogram const& in, dip::dfloat sigma = 4.0) -> dip::dfloat - Determines a threshold using the using the chord method (a.k.a. skewed bi-modality, maximum distance
to triangle), and the image’s histogram
in
. -
auto dip::
BackgroundThreshold(dip::Histogram const& in, dip::dfloat distance = 2.0, dip::dfloat sigma = 4.0) -> dip::dfloat - Determines a threshold using the unimodal background-symmetry method, and the image’s histogram
in
. -
auto dip::
KMeansClustering(dip::Histogram const& in, dip::uint nClusters = 2) -> dip::Histogram - Partitions a (multi-dimensional) histogram into
nClusters
partitions using k-means clustering. -
auto dip::
MinimumVariancePartitioning(dip::Histogram const& in, dip::uint nClusters = 2) -> dip::Histogram - Partitions a (multi-dimensional) histogram into
nClusters
partitions iteratively using Otsu thresholding along individual dimensions. -
auto dip::
EqualizationLookupTable(dip::Histogram const& in) -> dip::LookupTable - Computes a lookup table that, when applied to an image with the histogram
in
, yields an image with a flat histogram (or rather a histogram that is as flat as possible). -
auto dip::
MatchingLookupTable(dip::Histogram const& in, dip::Histogram const& example) -> dip::LookupTable - Computes a lookup table that, when applied to an image with the histogram
in
, yields an image with a histogram as similar as possible toexample
. -
auto dip::
PerObjectHistogram(dip::Image const& grey, dip::Image const& label, dip::Image const& mask = {}, dip::Histogram::Configuration configuration = {}, dip::String const& mode = S::FRACTION, dip::String const& background = S::EXCLUDE) -> dip::Distribution - Computes a histogram of grey values in
grey
for each object inlabel
.
Operators
-
auto dip::
operator+(dip::Histogram const& lhs, dip::Histogram const& rhs) -> dip::Histogram - Adds two histograms.
-
auto dip::
operator-(dip::Histogram const& lhs, dip::Histogram const& rhs) -> dip::Histogram - Subtracts two histograms.
-
auto dip::
operator<<(std::ostream& os, dip::Histogram const& histogram) -> std::ostream& - You can output a
dip::Histogram
tostd::cout
or any other stream. Some information about the histogram is printed.
Variables
-
dip::DataType const dip::
DT_COUNT constexpr - Data type of histogram bins. See
dip::Histogram::CountType
.