statistics.h file
Declares image statistics functions, including projections. See Math and statistics.
Classes
-
struct dip::
SpatialOverlapMetrics - Holds return values for the function
dip::SpatialOverlap
.
Functions
-
auto dip::
Count(dip::Image const& in, dip::Image const& mask = {}) -> dip::uint - Counts the number of non-zero pixels in a scalar image.
-
auto dip::
MaximumPixel(dip::Image const& in, dip::Image const& mask = {}, dip::String const& positionFlag = S::FIRST) -> dip::UnsignedArray - Returns the coordinates of the maximum pixel in the image.
-
auto dip::
MinimumPixel(dip::Image const& in, dip::Image const& mask = {}, dip::String const& positionFlag = S::FIRST) -> dip::UnsignedArray - Returns the coordinates of the minimum pixel in the image.
-
void dip::
CumulativeSum(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::BooleanArray const& process = {}) - Calculates the cumulative sum of the pixel values over all those dimensions which are specified by
process
. -
auto dip::
MaximumAndMinimum(dip::Image const& in, dip::Image const& mask = {}) -> dip::MinMaxAccumulator - Finds the largest and smallest value in the image, within an optional mask.
-
auto dip::
Quartiles(dip::Image const& in, dip::Image const& mask = {}) -> dip::QuartilesResult - Computes the minimum, lower quartile (25th percentile), median (50th percentile), upper quartile (75th percentile), and maximum.
-
auto dip::
SampleStatistics(dip::Image const& in, dip::Image const& mask = {}) -> dip::StatisticsAccumulator - Computes the first four central moments of the pixel intensities, within an optional mask.
-
auto dip::
Covariance(dip::Image const& in1, dip::Image const& in2, dip::Image const& mask = {}) -> dip::CovarianceAccumulator - Computes the covariance and correlation between the two images, within an optional mask.
-
auto dip::
PearsonCorrelation(dip::Image const& in1, dip::Image const& in2, dip::Image const& mask = {}) -> dip::dfloat - Computes the Pearson correlation coefficient. See
dip::Covariance
. -
auto dip::
SpearmanRankCorrelation(dip::Image const& in1, dip::Image const& in2, dip::Image const& mask = {}) -> dip::dfloat - Computes the Spearman rank correlation coefficient.
-
auto dip::
CenterOfMass(dip::Image const& in, dip::Image const& mask = {}) -> dip::FloatArray - Computes the center of mass (first order moments) of the image
in
, optionally using only those pixels selected bymask
. -
auto dip::
Moments(dip::Image const& in, dip::Image const& mask = {}) -> dip::MomentAccumulator - Computes the first order normalized moments and second order normalized central moments of the image
in
, optionally using only those pixels selected bymask
. -
void dip::
Mean(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::String const& mode = "", dip::BooleanArray const& process = {}) - Calculates the (arithmetic) mean of the pixel values over all those dimensions which are specified by
process
. -
void dip::
Sum(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::BooleanArray const& process = {}) - Calculates the sum of the pixel values over all those dimensions which are specified by
process
. -
void dip::
GeometricMean(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::BooleanArray const& process = {}) - Calculates the geometric mean of the pixel values over all those dimensions which are specified by
process
. -
void dip::
Product(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::BooleanArray const& process = {}) - Calculates the product of the pixel values over all those dimensions which are specified by
process
. -
void dip::
MeanAbs(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::BooleanArray const& process = {}) - Calculates the mean of the absolute pixel values over all those dimensions which are specified by
process
. -
void dip::
MeanModulus(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::BooleanArray const& process = {}) - Calculates the mean of the modulus of the pixel values. Alias to
dip::MeanAbs
. -
void dip::
SumAbs(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::BooleanArray const& process = {}) - Calculates the sum of the absolute pixel values over all those dimensions which are specified by
process
. -
void dip::
SumModulus(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::BooleanArray const& process = {}) - Calculates the sum of the modulus of the pixel values. Alias to
dip::SumAbs
. -
void dip::
MeanSquare(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::BooleanArray const& process = {}) - Calculates the mean of the square pixel values over all those dimensions which are specified by
process
. -
void dip::
SumSquare(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::BooleanArray const& process = {}) - Calculates the sum of the square pixel values over all those dimensions which are specified by
process
. -
void dip::
MeanSquareModulus(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::BooleanArray const& process = {}) - Calculates the mean of the square modulus of the pixel values over all those dimensions which are specified by
process
. -
void dip::
SumSquareModulus(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::BooleanArray const& process = {}) - Calculates the sum of the square modulus of the pixel values over all those dimensions which are specified by
process
. -
void dip::
Variance(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::String mode = S::FAST, dip::BooleanArray const& process = {}) - Calculates the variance of the pixel values over all those dimensions which are specified by
process
. -
void dip::
StandardDeviation(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::String mode = S::FAST, dip::BooleanArray const& process = {}) - Calculates the standard deviation of the pixel values over all those dimensions which are specified by
process
. -
void dip::
Maximum(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::BooleanArray const& process = {}) - Calculates the maximum of the pixel values over all those dimensions which are specified by
process
. -
void dip::
Minimum(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::BooleanArray const& process = {}) - Calculates the minimum of the pixel values over all those dimensions which are specified by
process
. -
void dip::
MaximumAbs(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::BooleanArray const& process = {}) - Calculates the maximum of the absolute pixel values over all those dimensions which are specified by
process
. -
void dip::
MinimumAbs(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::BooleanArray const& process = {}) - Calculates the minimum of the absolute pixel values over all those dimensions which are specified by
process
. -
void dip::
Percentile(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::dfloat percentile = 50, dip::BooleanArray const& process = {}) - Calculates the percentile of the pixel values over all those dimensions which are specified by
process
. -
void dip::
Median(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::BooleanArray const& process = {}) - Calculates the median of the pixel values over all those dimensions which are specified by
process
. -
void dip::
MedianAbsoluteDeviation(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::BooleanArray const& process = {}) - Computes the median absolute deviation (MAD)
-
void dip::
All(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::BooleanArray const& process = {}) - Determines if all pixels have non-zero values over all those dimensions which are specified by
process
. -
void dip::
Any(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::BooleanArray const& process = {}) - Determines if any pixel has a non-zero value over all those dimensions which are specified by
process
. -
void dip::
PositionMaximum(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::uint dim = 0, dip::String const& mode = S::FIRST) - Calculates the position of the maximum of the pixel values in a single dimension specified by
dim
. -
void dip::
PositionMinimum(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::uint dim = 0, dip::String const& mode = S::FIRST) - Calculates the position of the minimum of the pixel values in a single dimension specified by
dim
. -
void dip::
PositionPercentile(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::dfloat percentile = 50, dip::uint dim = 0, dip::String const& mode = S::FIRST) - Calculates the position of the percentile of the pixel values in a single dimension specified by
dim
. -
void dip::
PositionMedian(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::uint dim = 0, dip::String const& mode = S::FIRST) - Calculates the position of the median of the pixel values in a single dimension specified by
dim
. -
void dip::
RadialSum(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::dfloat binSize = 1, dip::String const& maxRadius = S::OUTERRADIUS, dip::FloatArray const& center = {}) - Computes the radial projection of the sum of the pixel values of
in
. -
void dip::
RadialMean(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::dfloat binSize = 1, dip::String const& maxRadius = S::OUTERRADIUS, dip::FloatArray const& center = {}) - Computes the radial projection of the mean of the pixel values of
in
. -
void dip::
RadialMinimum(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::dfloat binSize = 1, dip::String const& maxRadius = S::OUTERRADIUS, dip::FloatArray const& center = {}) - Computes the radial projection of the minimum of the pixel values of
in
. -
void dip::
RadialMaximum(dip::Image const& in, dip::Image const& mask, dip::Image& out, dip::dfloat binSize = 1, dip::String const& maxRadius = S::OUTERRADIUS, dip::FloatArray const& center = {}) - Computes the radial projection of the maximum of the pixel values of
in
. -
auto dip::
MeanError(dip::Image const& in, dip::Image const& reference, dip::Image const& mask = {}) -> dip::dfloat - Calculates the mean error difference between corresponding sample values of
in
andreference
. -
auto dip::
MeanSquareError(dip::Image const& in, dip::Image const& reference, dip::Image const& mask = {}) -> dip::dfloat - Calculates the mean square error difference between corresponding sample values of
in
andreference
. -
auto dip::
RootMeanSquareError(dip::Image const& in, dip::Image const& reference, dip::Image const& mask = {}) -> dip::dfloat - Calculates the root mean square (RMS) error difference between corresponding sample values of
in
andreference
. -
auto dip::
MeanAbsoluteError(dip::Image const& in, dip::Image const& reference, dip::Image const& mask = {}) -> dip::dfloat - Calculates the mean absolute error difference between corresponding sample values of
in
andreference
. -
auto dip::
MaximumAbsoluteError(dip::Image const& in, dip::Image const& reference, dip::Image const& mask = {}) -> dip::dfloat - Calculates the maximum absolute error difference between corresponding sample values of
in
andreference
. -
auto dip::
MeanRelativeError(dip::Image const& in, dip::Image const& reference, dip::Image const& mask = {}) -> dip::dfloat - Calculates the mean relative error difference between corresponding sample values of
in
andreference
. -
auto dip::
MaximumRelativeError(dip::Image const& in, dip::Image const& reference, dip::Image const& mask = {}) -> dip::dfloat - Calculates the maximum relative error difference between corresponding sample values of
in
andreference
. -
auto dip::
IDivergence(dip::Image const& in, dip::Image const& reference, dip::Image const& mask = {}) -> dip::dfloat - Calculates the I-divergence between corresponding sample values of
in
andreference
. -
auto dip::
InProduct(dip::Image const& in, dip::Image const& reference, dip::Image const& mask = {}) -> dip::dfloat - Calculates the sum of the product of corresponding sample values of
in
andreference
. -
auto dip::
LnNormError(dip::Image const& in, dip::Image const& reference, dip::Image const& mask = {}, dip::dfloat order = 2.0) -> dip::dfloat - Calculates the
order
norm difference between corresponding sample values ofin
andreference
. -
auto dip::
PSNR(dip::Image const& in, dip::Image const& reference, dip::Image const& mask = {}, dip::dfloat peakSignal = 0.0) -> dip::dfloat - Calculates the peak signal-to-noise ratio, in dB.
-
auto dip::
SSIM(dip::Image const& in, dip::Image const& reference, dip::Image const& mask = {}, dip::dfloat sigma = 1.5, dip::dfloat K1 = 0.01, dip::dfloat K2 = 0.03) -> dip::dfloat - Calculates the structural similarity index (a visual similarity measure)
-
auto dip::
MutualInformation(dip::Image const& in, dip::Image const& reference, dip::Image const& mask = {}, dip::uint nBins = 256) -> dip::dfloat - Calculates the mutual information, in bits, using a histogram with
nBins
-by-nBins
bins. -
auto dip::
SpatialOverlap(dip::Image const& in, dip::Image const& reference) -> dip::SpatialOverlapMetrics - Compares a segmentation result
in
to the ground truthreference
. -
auto dip::
DiceCoefficient(dip::Image const& in, dip::Image const& reference) -> dip::dfloat - Compares a segmentation result
in
to the ground truthreference
, determining the Dice coefficient. -
auto dip::
JaccardIndex(dip::Image const& in, dip::Image const& reference) -> dip::dfloat - Compares a segmentation result
in
to the ground truthreference
, determining the Jaccard index. -
auto dip::
Specificity(dip::Image const& in, dip::Image const& reference) -> dip::dfloat - Compares a segmentation result
in
to the ground truthreference
, determining the specificity of the segmentation. -
auto dip::
Sensitivity(dip::Image const& in, dip::Image const& reference) -> dip::dfloat - Compares a segmentation result
in
to the ground truthreference
, determining the sensitivity of the segmentation. -
auto dip::
Accuracy(dip::Image const& in, dip::Image const& reference) -> dip::dfloat - Compares a segmentation result
in
to the ground truthreference
, determining the accuracy of the segmentation. -
auto dip::
Precision(dip::Image const& in, dip::Image const& reference) -> dip::dfloat - Compares a segmentation result
in
to the ground truthreference
, determining the precision of the segmentation. -
auto dip::
HausdorffDistance(dip::Image const& in, dip::Image const& reference) -> dip::dfloat - Computes the Hausdorff distance between two binary images.
-
auto dip::
ModifiedHausdorffDistance(dip::Image const& in, dip::Image const& reference) -> dip::dfloat - Computes the modified Hausdorff distance between two binary images.
-
auto dip::
SumOfMinimalDistances(dip::Image const& in, dip::Image const& reference) -> dip::dfloat - Computes the sum of minimal distances (SMD) between two binary images.
-
auto dip::
ComplementWeightedSumOfMinimalDistances(dip::Image const& in, dip::Image const& reference) -> dip::dfloat - Computes the complement weighted sum of minimal distances (CWSMD) between two binary images.
-
auto dip::
Entropy(dip::Image const& in, dip::Image const& mask = {}, dip::uint nBins = 256) -> dip::dfloat - Calculates the entropy, in bits, using a histogram with
nBins
bins. -
auto dip::
EstimateNoiseVariance(dip::Image const& in, dip::Image const& mask = {}) -> dip::dfloat - Estimates the variance of white Gaussian noise in an image.