module #include "diplib.h"
Numeric algorithms and constants Functions and constants to be used in numeric computation, unrelated to images.
Classes
-
class dip::
ThinPlateSpline - Fits a thin plate spline function to a set of points. Useful for interpolation of scattered points.
-
struct dip::
GaussianParameters - Parameters defining a 1D Gaussian. Returned by
dip::GaussianMixtureModel
. -
class dip::
StatisticsAccumulator StatisticsAccumulator
computes population statistics by accumulating the first four central moments.-
class dip::
VarianceAccumulator VarianceAccumulator
computes mean and standard deviation by accumulating the first two central moments.-
class dip::
FastVarianceAccumulator FastVarianceAccumulator
computes mean and standard deviation by accumulating the sum of sample values and the sum of the square of sample values.-
class dip::
CovarianceAccumulator CovarianceAccumulator
computes covariance and correlation of pairs of samples by accumulating the first two central moments and cross-moments.-
class dip::
DirectionalStatisticsAccumulator DirectionalStatisticsAccumulator
computes directional mean and standard deviation by accumulating a unit vector with the input value as angle.-
class dip::
MinMaxAccumulator MinMaxAccumulator
computes minimum and maximum values of a sequence of values.-
class dip::
MomentAccumulator MomentAccumulator
accumulates the zeroth order moment, the first order normalized moments, and the second order normalized central moments, inN
dimensions.
Enums
-
enum class dip::
Option:: Periodicity: uint8{ NOT_PERIODIC, PERIODIC } - Select if the operation is periodic or not. Used in
dip::GaussianMixtureModel
.
Functions
-
template<typename T>auto dip::
maximum_gauss_truncation() -> dip::dfloat constexpr - Maximum meaningful truncation value for a Gaussian. Larger truncation values will lead to differences
of more than one machine epsilon between the middle and the ends of the Gaussian.
T
must be a floating-point type. -
auto dip::
gcd(dip::uint a, dip::uint b) -> dip::uint constexpr - Compute the greatest common denominator of two positive integers.
-
template<typename T, <SFINAE> = 0>auto dip::
div_ceil(T lhs, T rhs) -> T constexpr - Integer division, unsigned, return ceil.
-
template<typename T, <SFINAE> = 0>auto dip::
div_floor(T lhs, T rhs) -> T constexpr - Integer division, unsigned, return floor.
-
template<typename T, typename <SFINAE> = T>auto dip::
div_round(T lhs, T rhs) -> T constexpr - Integer division, return rounded.
-
auto dip::
modulo(dip::uint value, dip::uint period) -> dip::uint constexpr - Integer modulo, result is always positive, as opposed to % operator.
-
auto dip::
modulo(dip::sint value, dip::sint period) -> dip::sint constexpr - Integer modulo, result is always positive, as opposed to % operator.
-
template<typename T, typename <SFINAE>>auto dip::
floor_cast(T v) -> dip::sint constexpr - Fast floor operation, without checks, returning a
dip::sint
. -
template<typename T, typename <SFINAE>>auto dip::
ceil_cast(T v) -> dip::sint constexpr - Fast ceil operation, without checks, returning a
dip::sint
. -
template<typename T, typename <SFINAE>>auto dip::
round_cast(T v) -> dip::sint - Fast round operation, without checks, returning a
dip::sint
. -
template<typename T, bool inverse = false, typename <SFINAE>>auto dip::
consistent_round(T v) -> dip::sint constexpr - Consistent rounding, without checks, returning a
dip::sint
. -
template<typename T>auto dip::
abs(T value) -> T constexpr constexpr
version ofstd::abs
. Preferstd::abs
outside ofconstexpr
functions.-
template<typename T>auto dip::
clamp(T const& v, T const& lo, T const& hi) -> T const& constexpr - Clamps a value between a min and max value (a.k.a. clip, saturate, etc.).
-
auto dip::
pow10(dip::sint power) -> dip::dfloat constexpr - Computes integer powers of 10, assuming the power is relatively small.
-
auto dip::
ApproximatelyEquals(dip::dfloat lhs, dip::dfloat rhs, dip::dfloat tolerance = 1e-6) -> bool constexpr - Approximate floating-point equality:
abs(lhs-rhs)/lhs <= tolerance
. -
auto dip::
LengthUnicode(dip::String const& string) -> dip::uint - Counts the length of a (UTF-8 encoded) Unicode string.
-
auto dip::
BesselJ0(dip::dfloat x) -> dip::dfloat - Computes the Bessel function J of the order 0 (with around 7 digits of precision).
-
auto dip::
BesselJ1(dip::dfloat x) -> dip::dfloat - Computes the Bessel function J of the order 1 (with around 7 digits of precision).
-
auto dip::
BesselJN(dip::dfloat x, dip::uint n) -> dip::dfloat - Computes the Bessel function J of the order
n
(with around 7 digits of precision). -
auto dip::
BesselY0(dip::dfloat x) -> dip::dfloat - Computes the Bessel function Y of the order 0 (with around 7 digits of precision).
-
auto dip::
BesselY1(dip::dfloat x) -> dip::dfloat - Computes the Bessel function Y of the order 1 (with around 7 digits of precision).
-
auto dip::
BesselYN(dip::dfloat x, dip::uint n) -> dip::dfloat - Computes the Bessel function Y of the order
n
(with around 7 digits of precision). -
auto dip::
Sinc(dip::dfloat x) -> dip::dfloat - Computes the sinc function.
-
auto dip::
Phi(dip::dfloat x) -> dip::dfloat - Computes phi, the integral of the PDF of a Normal distribution with
unit variance and zero mean from minus infinity to
x
. -
auto dip::
Phi(dip::dfloat x, dip::dfloat m, dip::dfloat s) -> dip::dfloat - Computes phi, the integral of the PDF of a Normal distribution with
standard deviation
s
and meanm
from minus infinity tox
. -
auto dip::
HypersphereSurface(dip::uint n, dip::dfloat r) -> dip::dfloat constexpr - Computes the surface area of an
n
-dimensional hypersphere with radiusr
. -
auto dip::
HypersphereVolume(dip::uint n, dip::dfloat r) -> dip::dfloat constexpr - Computes the volume of an
n
-dimensional hypersphere with radiusr
. -
void dip::
SymmetricEigenDecomposition(dip::uint n, dip::ConstSampleIterator input, dip::SampleIterator lambdas, dip::SampleIterator vectors = nullptr) - Finds the eigenvalues and eigenvectors of a symmetric, real-valued matrix.
-
void dip::
SymmetricEigenDecomposition2(dip::ConstSampleIterator input, dip::SampleIterator lambdas, dip::SampleIterator vectors = nullptr) - Finds the eigenvalues and eigenvectors of a 2x2 symmetric, real-valued matrix.
-
void dip::
SymmetricEigenDecomposition3(dip::ConstSampleIterator input, dip::SampleIterator lambdas, dip::SampleIterator vectors = nullptr) - Finds the eigenvalues and eigenvectors of a 3x3 symmetric, real-valued matrix.
-
void dip::
LargestEigenvector(dip::uint n, dip::ConstSampleIterator input, dip::SampleIterator vector) - Finds the largest eigenvector of a symmetric, real-valued matrix.
-
void dip::
SmallestEigenvector(dip::uint n, dip::ConstSampleIterator input, dip::SampleIterator vector) - Finds the smallest eigenvector of a symmetric, real-valued matrix.
-
void dip::
SymmetricEigenDecompositionPacked(dip::uint n, dip::ConstSampleIterator input, dip::SampleIterator lambdas, dip::SampleIterator vectors = nullptr) - Finds the eigenvalues and eigenvectors of a symmetric, real-valued matrix, where only the unique values are given.
-
void dip::
EigenDecomposition(dip::uint n, dip::ConstSampleIterator input, dip::SampleIterator lambdas, dip::SampleIterator vectors = nullptr) - Finds the eigenvalues and eigenvectors of a square, real-valued matrix.
-
void dip::
EigenDecomposition(dip::uint n, dip::ConstSampleIterator input, dip::SampleIterator lambdas, dip::SampleIterator vectors = nullptr) - Finds the eigenvalues and eigenvectors of a square, complex-valued matrix.
-
template<typename T>auto dip::
Sum(dip::uint n, dip::ConstSampleIterator input) -> T - Computes the sum of the values of a vector.
-
template<typename T>auto dip::
SumAbsSquare(dip::uint n, dip::ConstSampleIterator input) -> dip::FloatType - Computes the sum of the square of the values of a vector.
-
template<typename T>auto dip::
Product(dip::uint n, dip::ConstSampleIterator input) -> T - Computes the product of the values of a vector.
-
template<typename T>auto dip::
Norm(dip::uint n, dip::ConstSampleIterator input) -> dip::FloatType - Computes the norm of a vector.
-
template<typename T>auto dip::
SquareNorm(dip::uint n, dip::ConstSampleIterator input) -> dip::FloatType - Computes the square norm of a vector.
-
auto dip::
Determinant(dip::uint n, dip::ConstSampleIterator input) -> dip::dfloat - Computes the determinant of a square, real-valued matrix.
-
auto dip::
Determinant(dip::uint n, dip::ConstSampleIterator input) -> dip::dcomplex - Computes the determinant of a square, complex-valued matrix.
-
template<typename T>auto dip::
DeterminantDiagonal(dip::uint n, dip::ConstSampleIterator input) -> T - Computes the determinant of a diagonal matrix.
-
template<typename T>auto dip::
Trace(dip::uint n, dip::ConstSampleIterator input) -> T - Computes the trace of a square matrix.
-
template<typename T>auto dip::
TraceDiagonal(dip::uint n, dip::ConstSampleIterator input) -> T - Computes the trace of a diagonal matrix.
-
void dip::
SingularValueDecomposition(dip::uint m, dip::uint n, dip::ConstSampleIterator input, dip::SampleIterator output, dip::SampleIterator U = nullptr, dip::SampleIterator V = nullptr) - Computes the “thin” singular value decomposition of a real-valued matrix
-
void dip::
SingularValueDecomposition(dip::uint m, dip::uint n, dip::ConstSampleIterator input, dip::SampleIterator output, dip::SampleIterator U = nullptr, dip::SampleIterator V = nullptr) - Computes the “thin” singular value decomposition of a complex-valued matrix
-
void dip::
Inverse(dip::uint n, dip::ConstSampleIterator input, dip::SampleIterator output) - Computes the inverse of a square, real-valued matrix.
-
void dip::
Inverse(dip::uint n, dip::ConstSampleIterator input, dip::SampleIterator output) - Computes the inverse of a square, complex-valued matrix.
-
void dip::
PseudoInverse(dip::uint m, dip::uint n, dip::ConstSampleIterator input, dip::SampleIterator output, dip::dfloat tolerance = 1e-7) - Computes the Moore-Penrose pseudo-inverse of a real-valued matrix, using the Jacobi SVD decomposition.
-
void dip::
PseudoInverse(dip::uint m, dip::uint n, dip::ConstSampleIterator input, dip::SampleIterator output, dip::dfloat tolerance = 1e-7) - Computes the Moore-Penrose pseudo-inverse of a complex-valued matrix, using the Jacobi SVD decomposition.
-
auto dip::
Rank(dip::uint m, dip::uint n, dip::ConstSampleIterator input) -> dip::uint - Computes the rank of a real-valued matrix.
-
auto dip::
Rank(dip::uint m, dip::uint n, dip::ConstSampleIterator input) -> dip::uint - Computes the rank of a complex-valued matrix.
-
void dip::
Solve(dip::uint m, dip::uint n, dip::ConstSampleIterator A, dip::ConstSampleIterator b, dip::SampleIterator output) - Solves a system of real-valued equations, using the Jacobi SVD decomposition.
-
auto dip::
GaussianMixtureModel(dip::ConstSampleIterator data, dip::SampleIterator responsibilities, dip::uint size, dip::uint numberOfGaussians, dip::uint maxIter = 20, dip::Option::Periodicity periodicity = Option::Periodicity::NOT_PERIODIC) -> std::vector<GaussianParameters> - Determines the parameters for a Gaussian Mixture Model.
Operators
-
auto dip::
operator+(dip::StatisticsAccumulator lhs, dip::StatisticsAccumulator const& rhs) -> dip::StatisticsAccumulator - Combine two accumulators
-
auto dip::
operator+(dip::VarianceAccumulator lhs, dip::VarianceAccumulator const& rhs) -> dip::VarianceAccumulator - Combine two accumulators
-
auto dip::
operator+(dip::FastVarianceAccumulator lhs, dip::FastVarianceAccumulator const& rhs) -> dip::FastVarianceAccumulator - Combine two accumulators
-
auto dip::
operator+(dip::DirectionalStatisticsAccumulator lhs, dip::DirectionalStatisticsAccumulator const& rhs) -> dip::DirectionalStatisticsAccumulator - Combine two accumulators
-
auto dip::
operator+(dip::MinMaxAccumulator lhs, dip::MinMaxAccumulator const& rhs) -> dip::MinMaxAccumulator - Combine two accumulators
-
auto dip::
operator+(dip::MomentAccumulator lhs, dip::MomentAccumulator const& rhs) -> dip::MomentAccumulator - Combine two accumulators
Variables
-
dip::dfloat const dip::
pi constexpr - The constant π.
-
dip::dfloat const dip::
nan constexpr - A NaN value.
-
dip::dfloat const dip::
infinity constexpr - Infinity.
Class documentation
struct dip:: GaussianParameters
Parameters defining a 1D Gaussian. Returned by dip::GaussianMixtureModel
.
Variables | |
---|---|
dip::dfloat position | The location of the origin, in pixels |
dip::dfloat amplitude | The amplitude (value at the origin) |
dip::dfloat sigma | The sigma (width) |
Enum documentation
enum class dip:: Option:: Periodicity: uint8
Select if the operation is periodic or not. Used in dip::GaussianMixtureModel
.
Enumerators | |
---|---|
NOT_PERIODIC = 0 | The operation is not periodic |
PERIODIC = 1 | The operation is periodic, left and right ends of the data are contiguous |
Function documentation
template<typename T, bool inverse = false, typename <SFINAE>>
dip::sint
dip:: consistent_round(T v) constexpr
Consistent rounding, without checks, returning a dip::sint
.
This rounding is consistent in that half-way cases are rounded in the same direction for positive and negative
values. The inverse
template parameter indicates the direction for these cases. By default, it matches
std::round
for positive values.
void
dip:: SymmetricEigenDecomposition(dip::uint n,
dip::ConstSampleIterator input,
dip::SampleIterator lambdas,
dip::SampleIterator vectors = nullptr)
Finds the eigenvalues and eigenvectors of a symmetric, real-valued matrix.
input
is a pointer to n*n
values, in column-major order; only the lower triangle will be used.
lambdas
is a pointer to space for n
values, which will be written sorted by magnitude, largest to smallest.
vectors
is a pointer to space for n*n
values and will receive the n
eigenvectors. The eigenvectors
can be accessed at &vectors[ 0 ]
, &vectors[ n ]
, &vectors[ 2*n ]
, etc.
If vectors
is nullptr
, no eigenvectors are computed.
void
dip:: LargestEigenvector(dip::uint n,
dip::ConstSampleIterator input,
dip::SampleIterator vector)
Finds the largest eigenvector of a symmetric, real-valued matrix.
input
is a pointer to n*n
values, in column-major order; only the lower triangle will be used.
vector
is a pointer to space for n
values, and will receive the eigenvector corresponding to the
largest eigenvalue by magnitude. The full decomposition as in dip::SymmetricEigenDecomposition
is computed,
but only one eigenvector is written to the output.
void
dip:: SmallestEigenvector(dip::uint n,
dip::ConstSampleIterator input,
dip::SampleIterator vector)
Finds the smallest eigenvector of a symmetric, real-valued matrix.
input
is a pointer to n*n
values, in column-major order; only the lower triangle will be used.
vector
is a pointer to space for n
values, and will receive the eigenvector corresponding to the
smallest eigenvalue by magnitude. The full decomposition as in dip::SymmetricEigenDecomposition
is computed,
but only one eigenvector is written to the output.
void
dip:: SymmetricEigenDecompositionPacked(dip::uint n,
dip::ConstSampleIterator input,
dip::SampleIterator lambdas,
dip::SampleIterator vectors = nullptr)
Finds the eigenvalues and eigenvectors of a symmetric, real-valued matrix, where only the unique values are given.
Calls dip::SymmetricEigenDecomposition
after copying over the input values to a temporary buffer.
input
is a pointer to n*(n+1)/2
values, stored in the same order as symmetric tensors are stored in an image
(see dip::Tensor::Shape). That is, fist are the main diagonal elements, then the elements above the diagonal,
column-wise. This translates to:
- 2D: xx, yy, xy
- 3D: xx, yy, zz, xy, xz, yz
- 4D: xx, yy, zz, tt, xy, xz, yz, xt, yt, zt
- etc.
See dip::SymmetricEigenDecomposition
for information on lambdas
and vectors
.
void
dip:: EigenDecomposition(dip::uint n,
dip::ConstSampleIterator input,
dip::SampleIterator lambdas,
dip::SampleIterator vectors = nullptr)
Finds the eigenvalues and eigenvectors of a square, real-valued matrix.
input
is a pointer to n*n
values, in column-major order.
lambdas
is a pointer to space for n
values, sorted by magnitude, largest to smallest
vectors
is a pointer to space for n*n
values and will receive the n
eigenvectors. The eigenvectors
can be accessed at &vectors[ 0 ]
, &vectors[ n ]
, &vectors[ 2*n ]
, etc.
If vectors
is nullptr
, no eigenvectors are computed.
void
dip:: EigenDecomposition(dip::uint n,
dip::ConstSampleIterator input,
dip::SampleIterator lambdas,
dip::SampleIterator vectors = nullptr)
Finds the eigenvalues and eigenvectors of a square, complex-valued matrix.
input
is a pointer to n*n
values, in column-major order.
lambdas
is a pointer to space for n
values, sorted by magnitude, largest to smallest
vectors
is a pointer to space for n*n
values and will receive the n
eigenvectors. The eigenvectors
can be accessed at &vectors[ 0 ]
, &vectors[ n ]
, &vectors[ 2*n ]
, etc.
If vectors
is nullptr
, no eigenvectors are computed.
template<typename T>
T
dip:: Sum(dip::uint n,
dip::ConstSampleIterator input)
Computes the sum of the values of a vector.
input
is a pointer to n
values.
template<typename T>
dip::FloatType
dip:: SumAbsSquare(dip::uint n,
dip::ConstSampleIterator input)
Computes the sum of the square of the values of a vector.
input
is a pointer to n
values.
template<typename T>
T
dip:: Product(dip::uint n,
dip::ConstSampleIterator input)
Computes the product of the values of a vector.
input
is a pointer to n
values.
template<typename T>
dip::FloatType
dip:: Norm(dip::uint n,
dip::ConstSampleIterator input)
Computes the norm of a vector.
input
is a pointer to n
values.
template<typename T>
dip::FloatType
dip:: SquareNorm(dip::uint n,
dip::ConstSampleIterator input)
Computes the square norm of a vector.
input
is a pointer to n
values.
dip::dfloat
dip:: Determinant(dip::uint n,
dip::ConstSampleIterator input)
Computes the determinant of a square, real-valued matrix.
input
is a pointer to n*n
values, in column-major order.
dip::dcomplex
dip:: Determinant(dip::uint n,
dip::ConstSampleIterator input)
Computes the determinant of a square, complex-valued matrix.
input
is a pointer to n*n
values, in column-major order.
template<typename T>
T
dip:: DeterminantDiagonal(dip::uint n,
dip::ConstSampleIterator input)
Computes the determinant of a diagonal matrix.
input
is a pointer to n
values, representing the matrix’s main diagonal.
template<typename T>
T
dip:: Trace(dip::uint n,
dip::ConstSampleIterator input)
Computes the trace of a square matrix.
input
is a pointer to n*n
values, in column-major order.
template<typename T>
T
dip:: TraceDiagonal(dip::uint n,
dip::ConstSampleIterator input)
Computes the trace of a diagonal matrix.
input
is a pointer to n
values, representing the matrix’s main diagonal.
void
dip:: SingularValueDecomposition(dip::uint m,
dip::uint n,
dip::ConstSampleIterator input,
dip::SampleIterator output,
dip::SampleIterator U = nullptr,
dip::SampleIterator V = nullptr)
Computes the “thin” singular value decomposition of a real-valued matrix
input
is a pointer to m*n
values, in column-major order.
output
is a pointer to p
values, where p = std::min( m, n )
. It contains the
singular values of input
, sorted in decreasing order.
U
and V
are pointers to m*p
and n*p
values, respectively. The left and right
singular vectors will be written to then.
If either of them is nullptr
, neither is computed, and only output
is filled.
SingularValueDecomposition
uses the two-sided Jacobi SVD decomposition algorithm.
This is efficient for small matrices only.
void
dip:: SingularValueDecomposition(dip::uint m,
dip::uint n,
dip::ConstSampleIterator input,
dip::SampleIterator output,
dip::SampleIterator U = nullptr,
dip::SampleIterator V = nullptr)
Computes the “thin” singular value decomposition of a complex-valued matrix
input
is a pointer to m*n
values, in column-major order.
output
is a pointer to p
values, where p = std::min( m, n )
. It contains the
singular values of input
, sorted in decreasing order.
U
and V
are pointers to m*p
and n*p
values, respectively. The left and right
singular vectors will be written to then.
If either of them is nullptr
, neither is computed, and only output
is filled.
SingularValueDecomposition
uses the two-sided Jacobi SVD decomposition algorithm.
This is efficient for small matrices only.
void
dip:: Inverse(dip::uint n,
dip::ConstSampleIterator input,
dip::SampleIterator output)
Computes the inverse of a square, real-valued matrix.
input
and output
are pointers to n*n
values, in column-major order.
The result is undetermined if the matrix is not invertible.
void
dip:: Inverse(dip::uint n,
dip::ConstSampleIterator input,
dip::SampleIterator output)
Computes the inverse of a square, complex-valued matrix.
input
and output
are pointers to n*n
values, in column-major order.
The result is undetermined if the matrix is not invertible.
void
dip:: PseudoInverse(dip::uint m,
dip::uint n,
dip::ConstSampleIterator input,
dip::SampleIterator output,
dip::dfloat tolerance = 1e-7)
Computes the Moore-Penrose pseudo-inverse of a real-valued matrix, using the Jacobi SVD decomposition.
input
is a pointer to m*n
values, in column-major order.
output
is a pointer to n*m
values, in column-major order.
tolerance
is an appropriate tolerance. Singular values smaller than tolerance * max(n,m) * p
, with p
the largest singular value, will be set to zero in the inverse.
void
dip:: PseudoInverse(dip::uint m,
dip::uint n,
dip::ConstSampleIterator input,
dip::SampleIterator output,
dip::dfloat tolerance = 1e-7)
Computes the Moore-Penrose pseudo-inverse of a complex-valued matrix, using the Jacobi SVD decomposition.
input
and output
are pointers to m*n
values, in column-major order.
output
is a pointer to n*m
values, in column-major order.
tolerance
is an appropriate tolerance. Singular values smaller than tolerance * max(n,m) * p
, with p
the largest singular value, will be set to zero in the inverse.
dip::uint
dip:: Rank(dip::uint m,
dip::uint n,
dip::ConstSampleIterator input)
Computes the rank of a real-valued matrix.
input
is a pointer to m*n
values, in column-major order.
dip::uint
dip:: Rank(dip::uint m,
dip::uint n,
dip::ConstSampleIterator input)
Computes the rank of a complex-valued matrix.
input
is a pointer to m*n
values, in column-major order.
void
dip:: Solve(dip::uint m,
dip::uint n,
dip::ConstSampleIterator A,
dip::ConstSampleIterator b,
dip::SampleIterator output)
Solves a system of real-valued equations, using the Jacobi SVD decomposition.
Solves , where A
is an m
xn
matrix (stored in column-major order),
and b
is a vector with m
values.
The unknown x
will have n
values, and will be written to output
.
std::vector<GaussianParameters>
dip:: GaussianMixtureModel(dip::ConstSampleIterator data,
dip::SampleIterator responsibilities,
dip::uint size,
dip::uint numberOfGaussians,
dip::uint maxIter = 20,
dip::Option::Periodicity periodicity = Option::Periodicity::NOT_PERIODIC)
Determines the parameters for a Gaussian Mixture Model.
data
is an iterator (or pointer) to the first of size
samples of a GMM (not random samples drawn
from such a distribution, but rather samples of a function representing the distribution).
numberOfGaussians
Gaussians will be fitted to it using the Expectation Maximization (EM) procedure.
The parameters are initialized deterministically, the means are distributed equally over the domain, the sigma are all set to the distance between means, and the amplitude are set to 1.
responsibilities
optionally points to a buffer of size size * numberOfGaussians
that will be used
internally. If set to nullptr
or a default-initialized iterator, a buffer will be allocated internally.
Use this parameter when repeatedly calling this function to avoid memory allocations.
maxIter
sets how many iterations are run. There is currently no other stopping criterion.
periodicity
determines if the data is considered periodic or not.
The output is sorted by amplitude, most important component first.
dip::StatisticsAccumulator
dip:: operator+(dip::StatisticsAccumulator lhs,
dip::StatisticsAccumulator const& rhs)
#include "diplib/accumulators.h"
Combine two accumulators
dip::VarianceAccumulator
dip:: operator+(dip::VarianceAccumulator lhs,
dip::VarianceAccumulator const& rhs)
#include "diplib/accumulators.h"
Combine two accumulators
dip::FastVarianceAccumulator
dip:: operator+(dip::FastVarianceAccumulator lhs,
dip::FastVarianceAccumulator const& rhs)
#include "diplib/accumulators.h"
Combine two accumulators
dip::DirectionalStatisticsAccumulator
dip:: operator+(dip::DirectionalStatisticsAccumulator lhs,
dip::DirectionalStatisticsAccumulator const& rhs)
#include "diplib/accumulators.h"
Combine two accumulators
dip::MinMaxAccumulator
dip:: operator+(dip::MinMaxAccumulator lhs,
dip::MinMaxAccumulator const& rhs)
#include "diplib/accumulators.h"
Combine two accumulators
dip::MomentAccumulator
dip:: operator+(dip::MomentAccumulator lhs,
dip::MomentAccumulator const& rhs)
#include "diplib/accumulators.h"
Combine two accumulators